skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jolicoeur, Brock"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Active fluid droplets surrounded by oil can spontaneously develop circulatory flows. However, the dynamics of the surrounding oil and their influence on the active fluid remain poorly understood. To investigate interactions between the active fluid and the passive oil across their interface, kinesin-driven microtubule-based active fluid droplets were immersed in oil and compressed into a cylinder-like shape. The droplet geometry supported intradroplet circulatory flows, but the circulation was suppressed when the thickness of the oil layer surrounding the droplet decreased. Experiments with tracers and network structure analyses and continuum models based on the dynamics of self-elongating rods demonstrated that the flow transition resulted from flow coupling across the interface between active fluid and oil, with a millimeter–scale coupling length. In addition, two novel millifluidic devices were developed that could trigger and suppress intradroplet circulatory flows in real time: one by changing the thickness of the surrounding oil layer and the other by locally deforming the droplet. This work highlights the role of interfacial dynamics in the active fluid droplet system and shows that circulatory flows within droplets can be affected by millimeter–scale flow coupling across the interface between the active fluid and the oil. 
    more » « less
  2. Active matter consumes local fuels to self-propel. When confined in a closed circular boundary, they can self-organize into a circulatory flow. Such coherence originates from the interactions between the active matter and boundaries, and boundary conditions play an important role on self-organization of active fluid. Herein, we probed how fluid boundaries influenced the self-organization of active fluid. The fluid boundaries were created by confining the active fluid in a compressed water-in-oil droplet. Due to surface tension, the droplet shaped into a cylinder-like geometry. Since water and oil were both fluids, their interface was fluid. We systematically probed how droplet shapes and the amount of oil surrounding the droplet influenced the development of circulation. We found that the formation of circulatory flows depended on the thickness of the oil layer surrounding the droplet, implying that the fluid dynamics between the active fluid within the droplet and the oil outside the droplet were coupled. We used a 3D COMSOL-based simulation successfully reproduced such oil-layer dependence. Finally, we developed two milli-fluidic devices to deform the droplet and alter the oil layer thickness manually to trigger and suppress the intra-droplet circulatory flow in real time. 
    more » « less
  3. Fluid dynamics of conventional passive fluid are known to be affected by boundary condition. For example, flow rates in a pipe depend on slipperiness of pipe surface. Similarly, active fluid, which consumes fuels locally to flow spontaneously, was reported to self-flow along a meter-long tubing with the flow rate depending on tubing geometry. However, how boundary condition influences fluid dynamics in an active fluid system remains poorly understood. Here, we investigated how a fluid boundary influenced self-organization of confined active fluid by establishing a 3D COMSOL-based nemato-hydrodynamic simulation platform where active fluid was confined in a compressed cylindrical water-in-oil droplet. Since the droplet interface was fluid, the fluid dynamics within and outside the droplet were coupled. Our simulation demonstrated that flow behaviors of intra-droplet active fluid were influenced by the amount of oil that surrounded the droplet: Without altering the droplet geometry, expanding the volume of oil could induce a circulatory flow within the droplet, which resembled our experimental observation. Our work suggested the feasibility of controlling the fluid dynamics of a confined active fluid system across a fluid interface. 
    more » « less